วันพฤหัสบดีที่ 22 ตุลาคม พ.ศ. 2563

ข้อสอบ PAT 2

 

ข้อสอบ PAT 

 



ข้อสอบ O-NET พร้อมเฉลย

  ข้อสอบ O-NET พร้อมเฉลย
















บทที่ 1 ความปลอดภัยและทักษะในการปฎิบัติการเคมี

 บทที่ 1 ความปลอดภัยและทักษะในการปฎิบัติการเคมี

1.1 ความปลอดภัยในการทำงานกับสารเคมี
การทำปฏิบัติการเคมีส่วนใหญ่ต้องมีความเกี่ยวข้องกับสารเคมีอุปกรณ์และเครื่องมือต่างๆ ซึ่งผู้ทำการ
ปฏิบัติการต้องตระหนักถึงความปลอดภัยของตนเองและผู้อื่นและสิ่งแวดล้อมโดยผู้ทำการปฏิบัติการควร
ทราบเกี่ยวกับประเภทของสารเคมีที่ใช้ข้อควรปฏิบัติในการทำการปฏิบัติการเคมีและการกำจัดสารเคมีที่
ใช้แล้วหลังเสร็จสิ้นการปฏิบัติการเพื่อให้สามารถทำปฏิบัติการเคมีได้อย่างปลอดภัย
1.1.1 ประเภทของสารเคมี
 สารเคมี มีหลายประเภทแต่ละประเภทก็จะแตกต่างกันออกไป สารเคมีจึงจำเป็นต้องมีฉลากที่มีข้อมูล
เกี่ยวกับความอันตรายของสารเคมีเพื่อความปลอดภัยในการจัดเก็บ โดย ฉลากของสารเคมีที่ใช้ใน
ห้องปฏิบัติการควรมีข้อมูลดังนี้
1 ชื่อผลิตภัณฑ์
2 รูปสัญลักษณ์แสดงความเป็นอันตรายของสารเคมี
 3 ค าเตือนข้อมูลความเป็นอันตรายและข้อควรระวัง
 4 ข้อมูลของบริษัทผู้ผลิตสารเคมี
ตัวอย่างฉลากสารเคมี

บนฉลากบรรจุภัณฑ์จะมีสัญลักษณ์ แสดงความเป็นอันตราย ที่สื่อความหมายได้ชัดเจนในที่นี้จะกล่าวถึง
สองระบบ ได้แก่ Globally Harmonized System of classification and labelling of chemicals (GHS)
ซึ่งเป็นระบบที่ใช้สากล และ National fire protection association hazard identification system
(NFPA) เป็นระบบที่ใช้ในสหรัฐอเมริกา

ตัวอย่างสัญลักษณ์แสดงความเป็นอันตรายในระบบ GHS

สำหรับ สัญลักษณ์แสดงความเป็นอันตรายในระบบ NFPA จะ ใช้สีแทนความเป็นอันตรายในด้านต่างๆ
ได้แก่สีแดง แทนความไวไฟ สีน้ าเงินแทนความเป็นอันตรายต่อสุขภาพสีเหลืองแทนความว่องไวในการ
เกิดปฏิกิริยาเคมี โดยเศษตัวเลข 0-4 เพื่อระบุระดับความเป็นอันตรายจากน้อยไปหามากและช่องสีขาวใช้ใส่อักษรหรือสัญลักษณ์ที่แสดงสมบัติที่เป็นอันตรายด้านอื่นๆ

ตัวอย่างสัญลักษณ์แสดงความเป็นอันตรายในระบบ NFPA


1.1 สวมแว่นตานิรภัย สวมเสื้อคลุมปฏิบัติการที่ติดกระดุมทุกเม็ด ควรสวมถุงมือเมื่อ ต้องใช้สารกัด
กร่อนหรือสารที่มีอันตราย ควรสวมผ้าปิดปากเมื่อต้องใช้สารเคมีที่มีไอระเหย และทำปฏิบัติการในที่ซึ่งมี
อากาศถ่ายเทหรือในตู้ดูดควัน ดังรูป

1.2 ห้ามรับประทานอาหารและเครื่องดื่ม หรือทำกิจกรรมอื่น ๆ ที่ไม่เกี่ยวข้องกับการ ทำปฏิบัติการ
1.3 ไม่ทำการทดลองในห้องปฏิบัติการตามลำพังเพียงคนเดียว เพราะเมื่อเกิดอุบัติเหตุขึ้น จะไม่มีใคร
ทราบและไม่อาจช่วยได้ทันท่วงที หากเกิดอุบัติเหตุในห้องปฏิบัติการ ต้องแจ้งให้ครูผู้สอน ทราบทันทีทุกครั้ง
1.4 ไม่เล่นและไม่รบกวนผู้อื่นในขณะที่ทำปฏิบัติการ
1.5 ปฏิบัติตามขั้นตอนและวิธีการอย่างเคร่งครัด ไม่ทำการทดลองใด ๆ ที่นอกเหนือ จากที่ได้รับ
มอบหมาย และไม่เคลื่อนย้ายสารเคมี เครื่องมือ และอุปกรณ์ส่วนกลางที่ต้องใช้ร่วมกัน นอกจากได้รับอนุญาต
จากครูผู้สอนเท่านั้น
1.6 ไม่ปล่อยให้อุปกรณ์ให้ความร้อน เช่น ตะเกียงแอลกอฮอล์ เตาแผ่นให้ความร้อน (hot plate)
ทำงานโดยไม้มีคนดูแล และหลังจากใช้งานเสร็จแล้วให้ดับตะเกียงแอลกอฮอล์หรือปิดเครื่องและถอดปลั๊กไฟ
ออกทันที แล้วปล่อยไว้ให้เย็นก่อนการจัดเก็บ เมื่อใช้เตาแผ่นให้ความร้อนต้อง ระวังไม่ให้สายไฟพาดบน
อุปกรณ์
2) ข้อปฏิบัติในการใช้สารเคมี
2.1 อ่านชื่อสารให้แน่ใจก่อนนำไปใช้
2.2 เคลื่อนย้ายสารเคมีด้วยความระมัดระวัง
2.3 หันปากหลอดทดลองจากตัวเองและผู้อื่นเสมอ
2.4 ห้ามชิมสารเคมี
2.5 ห้ามเทน้ำลงกรดต้องให้กรดลงน้ำ
2.6 ไม่เก็บสารเคมีที่เหลือเข้าขวดเดิม
2.7 ทำสารเคมีหกให้เช็ด
  หลังทำปฏิบัติการ
 1) ทำความสะอาดอุปกรณ์ต่างๆ
 2) ก่อนออกจากห้องให้ถอดอุปกรณ์ป้องกันอันตราย
1.1.3 การกำจัดสารเคมี
 การกำจัดสารเคมีแต่ละประเภทสามารถปฏิบัติได้ดังนี้
1) สารเคมีที่เป็นของเหลวไม่อันตรายเป็นกลาง ปริมาณไม่เกิน 1 ลิตร สามารถเทลงอ่างน้ำได้ เลย
2) สารละลายเข้มข้นบางชนิด ควรเจือจางก่อนเทลงอ่างน้ำ
3) สารเคมีที่เป็นของแข็งไม่อันตราย ใส่ในภาชนะที่ปิดมิดชิด ก่อนทิ้งในที่จัดเตรียมไว้
4) สารไวไฟ สารประกอบของโลหะเป็นพิษห้ามทิ้งลงอ่างน้ำ
1.2 อุบัติเหตุจากสารเคมี
 ในการทำปฏิบัติการเคมีอาจเกิดอุบัติเหตุต่าง ๆ จากการใช้สารเคมีได้ ซึ่งหากผู้ทำปฏิบัติการมีความรู้ใน
การปฐมพยาบาลเบื้องต้นจะสามารถลดความรุนแรงและความเสียหายที่เกิดขึ้นได้ โดยการปฐมพยาบาล
เบื้องต้นจากอุบัติเหตุจากการใช้สารเคมี มีข้อปฏิบัติดังนี
 การปฐมพยาบาลเมื่อร่างกายสัมผัสสารเคมี
 1. ถอดเสื้อผ้าบริเวณที่เปื้อนสารเคมีออก และซับสารเคมีออกจากร่างกายให้มากที่สุด
 2. กรณีเป็นสารเคมีที่ละลายน้ำได้ เช่น กรดหรือเบส ให้ล้างบริเวณที่สัมผัสสารเคมีด้วยการเปิดน้ำไหลผ่านปริมาณมาก
 3. กรณีเป็นสารเคมีที่ไม่ละลายน้ำ ให้ล้างบริเวณที่สัมผัสสารเคมีด้วยน้ำสบู่
 4. หากทราบว่าสารเคมีที่สัมผัสร่างกายคือสารใด ให้ปฏิบัติตามข้อกำหนดในเอกสารความ ปลอดภัยของ
สารเคมีกรณีที่ร่างกายสัมผัสสารเคมีในปริมาณมากหรือมีความเข้มข้นสูงให้ปฐมพยาบาลเบื้องต้นแล้วนำส่งแพทย์
  
การปฐมพยาบาลเมื่อสารเคมีเข้าตา
 ตะแคงศีรษะโดยให้ตาด้านที่สัมผัสสารเคมีอยู่ด้านล่าง ล้างตาโดยการเปิดน้ำเบา ๆ ไหลผ่าน ดั้งจมูกให้น้ำ
ไหลผ่านตาข้างที่โดนสารเคมี ดังรูป พยายามลืมตาและกรอกตาในน้ าอย่างน้อย 10 นาที หรือจนกว่าแน่ใจว่าชะล้างสารออกหมดแล้ว ระวังไม้ให้น้ำเข้าตาอีกข้างหนึ่ง แล้วนำส่งแพทย์ทันที


การปฐมพยาบาลเมื่อสูดดมแก๊สพิษ
 1.เมื่อมีแก๊สพิษเกิดขึ้น ต้องรีบออกจากบริเวณในบริเวณที่มีอากาศถ่ายเทสะดวกทันที
 2.หากมีผู้ที่สูดดมแก๊สผิดจนหมดสติหรือไม่สามารถช่วยตนเองได้ ต้องลิ้มเคลื่อนย้ายออกจากบริเวณนั้น
ทันที โดยที่ผู้ช่วยเหลือต้องส่งอุปกรณ์ป้องกันที่เหมาะสมเช่นหน้ากากป้องกันแก๊สพิษหรือผ้าปิดปาก
 3.ปลดเสื้อผ้า เพื่อให้ผู้ประสบอุบัติเหตุหายใจได้สะดวกถ้าหมดสติให้จับนอนคว่ าแล้วตะแคงหน้าไป
ทางด้านใดด้านหนึ่งเพื่อป้องกันโคลน กีดขวางทางเดินหายใจ
การปฐมพยาบาลเมื่อโดนความร้อน
 แช่น้ าเย็นหรือปิดแผลด้วยผ้าชุบน้ำจนกว่าจะหายปวดแสบปวดร้อนและทายาขี้ผึ้งสำหรับไฟไหม้และ
น้ำร้อนลวก ถ้าเกิดบาดแผลใหญ่ให้นำส่งแพทย์
 กรณีที่สารเคมีเข้าตาให้ปฏิบัติตามคำแนะนำตามเอกสารความปลอดภัยแล้วนำส่งแพทย์ทุกกรณี
1.3 การวัดปริมาณสาร
 ในปฏิบัติการเคมีจำเป็นต้องมีการชั่ง ตวง และวัดปริมาณสารซึ่งการชั่ง ตวง วัดมีความคลาดเคลื่อนที่
เกิดจากอุปกรณ์ ที่ใช้หรือผู้ทำปฏิบัติการที่จะส่งผลให้ผลการทดลองที่ได้มีความมากกว่าหรือน้อยกว่าค่าจริง
ความน่าเชื่อถือของข้อมูลสามารถพิจารณาได้ 2 ส่วนด้วยกันคือความเที่ยง และความแม่นของข้อมูลโดยความเที่ยงคือ ความใกล้เคียงของข้าวที่ได้จากการวัดส่วนความแม่นคือความใกล้เคียงของค่าเฉลี่ยจากการวัดซ้ำ
เทียบกับค่าจริง
1.3.1 อุปกรณ์วัดปริมาตร
 อุปกรณ์วัดปริมาตรสารเคมีที่เป็นของเหลวที่ใช้ในห้องปฏิบัติการทางวิทยาศาสตร์มีหลายชนิด แต่ละชนิดมีขีดและตัวเลขแสดงปริมาตรที่ได้รับการตรวจสอบมาตรฐาน และกำหนดความคลาดเคลื่อน ที่ยอมรับได้ บางชนิดมีความคลาดเคลื่อนน้อย บางชนิด มีความคลาดเคลื่อนมาก ในการเลือกใช้ต้อง คำนึงถึงความเหมาะสมกับปริมาตรและระดับความแม่นที่ต้องการ อุปกรณ์วัดปริมาตรบางชนิดที่นักเรียน ได้ใช้งานในการทำปฏิบัติการทางวิทยาศาสตร์ที่ผ่านมา เช่น บีกเกอร์ ขวดรูปกรวย กระบอกตวง เป็น อุปกรณ์ที่ไม่สามารถบอกปริมาตรได้แม่นมากพอสำหรับการทดลองในบางปฏิบัติการ
  บีกเกอร์
 บีกเกอร์ (beaker) มีลักษณะเป็นทรงกระบอกปากกว้าง มีขีดบอกปริมาตรในระดับมิลลิลิตร มีหลายขนาด
ดังรูป
บีกเกอร์
   ขวดรูปกรวย 
 ขวดรูปกรวย (Erlenmeyer flask) มีลักษณะคล้ายผลชมพู่ มีขีดบอกปริมาตรในระดับมิลลิลิตร มี หลายขนาด ดังรูป


ขวดรูปกรวย
 กระบอกตวง
กระบอกตวง (measuring cylinder) มีลักษณะเป็นทรงกระบอก มีขีดบอกปริมาตรในระดับมิลลิลิตร มีหลายขนาด ดังรูป
                                                                                    
กระบอกตวง


    นอกจากนี้ยังมีอุปกรณ์ที่สามารถวัดปริมาตรของของเหลวได้แม่นมากกว่าอุปกรณ์ข้างต้น โดยมีทั้งที่ เป็นการวัดปริมาตรของของเหลวที่บรรจุอยู่ภายใน และการวัดปริมาตรของของเหลวที่ถ่ายเท เช่น ปิเปตต์ บิวเรตต์ ขวดกำหนดปริมาตร 
 ปิเปตต์ 
ปิเปตต์ (pipette) เป็นอุปกรณ์วัดปริมาตรที่มีความแม่นสูง ซึ่งใช้สำหรับถ่ายเทของเหลว ปิเปตต์ ที่ใช้กันทั่วไปมี 2 แบบ คือ แบบปริมาตรซึ่งมีกระเปาะตรงกลาง มีขีดบอกปริมาตรเพียงค่าเดียว และแบบ ใช้ตวง มีขีดบอกปริมาตรหลายค่า ดังรูป
                                                                                  

ปิเปตต์


    บิวเรตต์ 
บิวเรตต์ (burette) เป็นอุปกรณ์สำหรับถ่ายเทของเหลวในปริมาตรต่าง ๆ ตามต้องการ มีลักษณะ เป็นทรงกระบอกยาวที่มีขีดบอกปริมาตร และมีอุปกรณ์ควบคุมการไหลของของเหลวที่เรียกว่า ก๊อก ปิด เปิด (stop cock) ดังรูป
                                                                                  
บิวเรตต์


  ขวดกำหนดปริมาตร  
ขวดกหนดปริมาตร (volumetric flask) เป็นอุปกรณ์สำหรับวัดปริมาตรของของเหลวที่บรรจุ ภายใน ใช้สำหรับเตรียมสารละลายที่ต้องการความเข้มข้นแน่นอน มีขีดบอกปริมาตรเพียงขีดเดียว มีจุก ปิดสนิท ขวดก าหนดปริมาตรมีหลายขนาด ดังแสดงในรูป 

     การใช้อุปกรณ์วัดปริมาตรเหล่านี้ให้ได้ค่าที่น่าเชื่อถือจะต้องมีการอ่านปริมาตรของของเหลว ให้ถูกวิธี โดยต้องให้สายตาอยู่ระดับเดียวกันกับระดับส่วนโค้งของของเหลว โดยถ้าส่วนโค้งของ ของเหลวมีลักษณะ เว้า ใหอ่านปริมาตรที่จุดต่ าสุดของส่วนโค้งนั้น แต่ถ้าส่วนโค้งของของเหลวมี ลักษณะนูน ให้อ่านปริมาตรที่ จุดสูงสุดของส่วนโค้งนั้น แสดงดังรูป การอ่านค่าปริมาตรของ ของเหลวให้อ่านตามขีดบอกปริมาตรและ ประมาณค่าทศนิยมต าแหน่งสุดท้าย

    อุปกรณ์วัดปริมาตรบางชนิด เช่น ปิเปตต์แบบปริมาตร ขวดกำหนดปริมาตร มีขีดบอก ปริมาตรเพียง ขีดเดียว อุปกรณ์ประเภทนี้ออกแบบมาเพื่อให้ใช้ในการถ่ายเทหรือบรรจุของเหลวที่มี ปริมาตรเพียงค่า เดียวตามที่ระบุบนอุปกรณ์ ดังนั้นผู้ใช้จึงจำเป็นต้องพยายามปรับระดับของเหลวให้ ตรงกับขีดบอก ปริมาตร 
    การบันทึกค่าปริมาตรให้บันทึกตามขนาดและความละเอียดของอุปกรณ์ เช่น ปิเปตต์มีความ ละเอียดของค่าปริมาตรถึงทศนิยมต าแหน่งที่สอง ดังนั้นปริมาตรของเหลวที่ได้จากการใช้ปิเปตต์ ขนาด 10 มิลลิลิตร บันทึกค่าปริมาตรเป็น 10.00 มิลลิลิตร 
    1.3.2 อุปกรณ์วัดมวล เครื่องชั่ง เป็นอุปกรณ์ส าหรับวัดมวลของสารทั้งที่เป็นของแข็งและของเหลว ความน่าเชื่อถือ ของ ค่ามวลที่วัดได้ขึ้นอยู่กับความละเอียดของเครื่องชั่งและวิธีการใช้เครื่องชั่ง เครื่องชั่งที่ใช้ในห้องปฏิบัติการ เคมีโดยทั่วไปมี 2 แบบ คือ เครื่องชั่งแบบสามคาน (triple beam) และเครื่องชั่งไฟฟ้า (electronic balance) ซึ่งมีส่วนประกอบหลัก ดังรูป
                                                                                     
เครื่องชั่งสามคาน

เครื่องชั่งไฟฟ้า


      ส่วนประกอบของเครื่องชั่งแบบสามคานและเครื่องชั่งไฟฟ้า ปัจจุบันเครื่องชั่งไฟฟ้าได้รับความนิยมมากขึ้น เนื่องจากสามารถใช้งานได้สะดวกและหาซื้อได้ง่าย ตัวเลขทศนิยมตำแหน่งสุดท้ายซึ่งเป็นค่าประมาณของเครื่องชั่งแบบสามคานมาจากการประมาณของผู้ชั่ง ขณะที่ทศนิยมต าแหน่งสุดท้ายของเครื่องชั่งไฟฟ้ามาจากการประมาณของอุปกรณ์ 


  1.3.3 เลขนัยสำคัญ
การนับเลขนัยสำคัญ มีหลักการดังนี้
1.ตัวเลขที่ไม่ใช่ 0 ทั้งหมด ถือว่าเป็นเลขนัยสำคัญ
2.เลข 0 ที่อยู่ระหว่างตัวอื่นถือว่าเป็นเลขนัยสำคัญ
3.เลข ที่อยู่หน้าตัวเลขอื่นไม่ถือว่าเป็นเลขนัยสําคัญ
4.เลข 0 ที่อยู่หลังตัวเลขอื่นที่เป็นอยู่หลังทศนิยม ถือว่าเป็นเลขนัยสำคัญ
5.เลข 0 ที่อยู่หลังเลขที่ไม่มีทศนิยมอาจนับเป็นเลขนัยสำคัญ หรือไม่นับก็ได้
6.ตัวเลขที่แม่นตรงเป็นตัวเลขที่ซ้ำเข้าแน่นอนมีเลขนัยสำคัญเป็น อนันต์
7.ข้อมูลที่มีค่าน้อยมากๆหรือเขียนในรูปของสัญกรณ์วิทยาศาสตร์ ตัวเลข สัมประสิทธิ์ ทุกตัวนับเป็นนัยสำคัญ
การปัดตัวเลข พิจารณาจากตัวเลขที่อยู่ถัดจากตำแหน่งที่ต้องการดังนี้
1.กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่าน้อยกว่า 5 ให้ตัดตัวเลขที่ อยู่ถัดไปทั้งหมด
2.กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่ามากกว่า 5 ให้เพิ่มค่าของตัวเลขตำแหน่งสุดท้ายที่ต้องการอีก 1
3.กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่าเท่ากับ 5 และมีตัวเลขอื่นที่ไม่ใช่ศูนย์ต่อจากเลข 5 ให้เพิ่มค่าของตัวเลขตำแหน่งสุดท้ายอีก 1
4.กรณีที่ตัวเลขถัดจากตำแหน่งที่ต้องการมีค่าเท่ากับ 5 และไม่มีตัวเลขอื่นต่อจากเลข 5 ต้องพิจารณาตัวเลขที่อยู่ หน้าเลข 5 ดังนี้
4.1 ภาคตัวเลขที่อยู่หน้าเลข 5 เป็นเลขคี่ ให้ตัวเลขดังกล่าวบวกค่าเพิ่มอีก 1 แล้วแต่ตัวเลขตั้งแต่เลข 5 ไปทั้งหมด
4.2 หาตัวเลขที่อยู่หน้าเลข 5 เป็นเลขคู่ให้ตัวเลขดังกล่าวเป็นเลขตัวเดิมตัว แล้วแต่ตัวเลขตั้งแต่เลข 5 ไปทั้งหมด
การบวกและการลบ ในการบวกและการลบผลที่ได้จะมีจำนวนตัวเลขที่อยู่หลังจุดทศนิยมเท่ากับข้อมูลที่มีจำนวนตัวเลขที่อยู่หลังจุดทศนิยมน้อยที่สุด
การคูณและการหาร ในการคูณและการหารผลที่ได้จะมีจำนวนเลขนัยสำคัญเท่ากับข้อมูลที่มีเลขนัยสำคัญน้อยที่สุด
1.4 หน่วยวัด
การระบุหน่วยของการวัดปริมาตรต่างๆ ในชีวิตประจำวันไม่ว่าจะเป็นความยาวมวลอุณหภูมิอาจแตกต่างกันแต่ละประเทศ และในบางกรณี นำไปสู่ความเข้าใจผิดที่ทำให้เกิดความเสียหายดังนั้นเพื่อให้การสื่อสารข้อมูลของการวัดเป็นการเข้าใจตรงกันมากขึ้นจึงมีการตกลงร่วมกันให้มีหน่วยมาตรฐานสากลขึ้น
1.4.1 หน่วยในระบบ SI
เป็นหน่วยที่ดัดแปลงจากหน่วยในระบบเมทริกซ์ โดยแบ่งเป็นหน่วยพื้นฐานมี 7 หน่วยคือ
มวล มีหน่วยเป็นกิโลกรัม อุณหภูมิ มีหน่วยเป็นเคลวิน
ความยาว มีหน่วยเป็นเมตร ปริมาตรของสาร มีหน่วยเป็นโมล
เวลา มีหน่วยเป็นวินาที กระแสไฟฟ้า มีหน่วยเป็นแอมแปร์
ความเข้มแห่งการส่องสว่าง มีหน่วยเป็นแคนเดลา
เป็นหน่วย SI อนุพันธ์อีก 3 หน่วย
ปริมาตร มีหน่วยเป็นลูกบาศก์เมตร ความเข้มข้นมีหน่วยเป็นโมลต่อลูกบาศก์เมตร
ความหนาแน่น มีหน่วยเป็นกิโลกรัมต่อลูกบาศก์เมตร
หน่วยนอกระบบ SI ในเคมียังมีหน่วยอื่นที่ได้รับการยอมรับและมีการใช้กันอย่างแพร่หลาย
เช่น ปริมาตร มีหน่วยเป็นลิตร มวล มีหน่วยเป็นกรัมหรือดอลตันหรือหน่วยมวลอะตอม ความดัน มีหน่วยเป็นบาร์ มิลลิเมตรปรอท หรือบรรยากาศ
ความยาว มีหน่วยเป็นอังสตรอม พลังงาน มีหน่วยเป็นแคลอรี อุณหภูมิ มีหน่วยเป็นองศาเซลเซียส
1.4.2 แฟกเตอร์เปลี่ยนหน่วย
เป็นอัตราส่วนระหว่างหน่วยที่แตกต่างกันสองหน่วยที่มีปริมาณเท่ากัน
วิธีการเทียบหน่วย
ทำได้โดยการคูณปริมาณในหน่วยเริ่มต้นด้วยแฟกเตอร์เปลี่ยนหน่วยที่มีหน่วยที่ต้องการอยู่ด้านบนตามสมการ
ปริมาณและหน่วยที่ต้องการ = ปริมาณและหน่วยเริ่มต้น * หน่วยที่ต้องการ / หน่วยเริ่มต้น
1.5 วิธีการทางวิทยาศาสตร์
การทำปฏิบัติการเคมีนอกจากจะต้องมีการวางแผนการทดลองการทำการทดลองการบันทึกข้อมูลการสรุปและวิเคราะห์ข้อมูลการนำเสนอข้อมูลและการเขียนรายงานการทำการทดลองที่ถูกต้องแล้วต้องคำนึงถึงวิธีการทางวิทยาศาสตร์ทักษะกระบวนการทางวิทยาศาสตร์และจิตวิทยาศาสตร์วิธีการทางวิทยาศาสตร์เป็นกระบวนการศึกษาหาความรู้ทางวิทยาศาสตร์ที่มีแบบแผนขั้นตอน

บทที่ 2 พันธะเคมี

 พันธะเคมี

ชนิดของพันธะเคมี


พันธะไอออนิก
  พันธะไอออนิก ( Ionic bond ) หมายถึงแรงยึดเหนี่ยวที่เกิดในสารประกอบที่เกิดขึ้นระหว่าง 2 อะตอมอะตอมที่มีค่าอิเล็กโตรเนกาติวิตีต่างกันมาก อะตอมที่มีค่าอิเลคโตรเนกาติวิตีน้อยจะให้อิเลคตรอนแก่อะตอมที่มีค่าอิเลคโตรเนกาติวิตีมาก และทำให้อิเล็กตรอนที่อยู่รอบๆ อะตอมครบ 8 (octat rule ) กลายเป็นไอออนบวก และไอออนลบตามลำดับ เกิดแรงดึงดูดทางไฟฟ้าระหว่างไอออนบวกและไอออนลบ และเกิดเป็นโมเลกุลขึ้น เช่น การเกิดสารประกอบ NaCl



 จากตัวอย่าง Na ซึ่งมีวาเลนซ์อิเล็กตรอนเท่ากับ 1 ได้ให้อิเล็กตรอนแก่ Cl ที่มีวาเลนซ์อิเล็กตรอนเท่ากับ 7 จึงทำให้ Na และ Cl มีวาเลนซ์อิเล็กตรอนเท่ากับ 8 เกิดเป็นสารประกอบไอออนิก

สมบัติของสารประกอบไอออนิก
1. มีขั้ว เพราะสารประกอบไอออนิกไม่ได้เกิดขึ้นเป็นโมเลกุลเดี่ยว แต่จะเป็นของแข็งซึ่งประกอบด้วยไอออนจำนวนมาก ซึ่งยึดเหนี่ยวกันด้วยแรงยึดเหนี่ยวทางไฟฟ้า
2. ไม่นำไฟฟ้าเมื่ออยู่ในสภาพของแข็ง แต่จะนำไฟฟ้าได้เมื่อใส่สารประกอบไอออนิกลงในน้ำ ไอออนจะแยกออกจากกัน ทำให้สารละลายนำไฟฟ้าในทำนองเดียวกันสารประกอบที่หลอมเหลวจะนำไฟฟ้าได้ด้วยเนื่องจากเมื่อหลอมเหลวไอออนจะเป็นอิสระจากกัน เกิดการไหลเวียนอิเลคตรอนทำให้อิเลคตรอนเคลื่อนที่จึงเกิดการนำไฟฟ้า
3 . มีจุหลอมเหลวและจุดเดือดสูง ความร้อนในการทำลายแรงดึงดูดระหว่างไอออนให้กลายเป็นของเหลวต้องใช้พลังงานสูง
4 . สารประกอบไอออนิกทำให้เกิดปฏิกิริยาไอออนิก คือ ปฏิกิริยาระหว่างไอออนกับไอออน ทั้งนี้เพราะสารไอออนิกจะเป็นไอออนอิสระในสารละลาย ปฏิกิริยาจึงเกิดทันที
5 . สมบัติไม่แสดงทิศทางของพันธะไอออนิก สารประกอบไอออนิกเกิดจากไอออนที่มีประจุตรงกันข้ามรอบ ๆ ไอออนแต่ละไอออนจะมีสนามไฟฟ้าซึ่งไม่มีทิศทาง จึงทำให้เกิดสมบัติไม่แสดงทิศทางของพันธะไอออนิก
6. เป็นผลึกแข็ง แต่เปราะและแตกง่าย

การอ่านชื่อสารประกอบไออนิก
  • กรณีเป็นสารประกอบธาตุคู่ ให้อ่านชื่อธาตุที่เป็นประจุบวก แล้วตามด้วยธาตุประจุลบ โดยลงท้ายเสียงพยางค์ท้ายเป็น “ ไอด์” (ide) เช่น

กล่องข้อความ: NaCl    อ่านว่า  โซเดียมคลอไรด์  Na2O    อ่านว่า  โซเดียมออกไซด์  CaF2 อ่านว่า  แคลเซียมฟูออไรด์

  • กรณีเป็นสารประกอบธาตุมากกว่าสองชนิด ให้อ่านชื่อธาตุที่เป็นประจุบวก แล้วตามด้วยกลุ่มธาตุที่เป็นประจุลบได้เลย เช่น
กล่องข้อความ: Na2SO4    อ่านว่า  โซเดียมซัลเฟต  CaCO3   อ่านว่า  แคลเซียมคาร์บอเนต  NH4NO3   อ่านว่า  แอมโมเนียมไนเตรต


  • กรณีเป็นสารประกอบธาตุโลหะทรานซิชัน ให้อ่านชื่อธาตุที่เป็นประจุบวกและจำนวนเลขออกซิเดชันหรือค่าประจุของธาตุเสียก่อน โดยวงเล็บเป็นเลขโรมัน แล้วจึงตามด้วยธาตุประจุลบ เช่น
กล่องข้อความ: CuSO4  อ่านว่า  คอปเปอร์ (II) ซัลเฟต  FeCl2 อ่านว่า  ไอร์รอน (II) คลอไรด์  FeCl3 อ่านว่า  ไอร์รอน (III) คลอไรด์

พันธะโควาเลนต์
  พันธะโควาเลนต์ (Covalent bond) หมายถึง พันธะในสารประกอบที่เกิดขึ้นระหว่างอะตอม 2 อะตอมที่มีค่าอิเล็กโตรเนกาติวิตีใกล้เคียงกันหรือเท่ากัน แต่ละอะตอมต่างมีความสามารถที่จะดึงอิเล็กตรอนไว้กับตัว อิเล็กตรอนคู่ร่วมพันธะจึงไม่ได้อยู่ ณ อะตอมใดอะตอมหนึ่งแล้วเกิดเป็นประจุเหมือนพันธะไอออนิก หากแต่เหมือนการใช้อิเล็กตรอนร่วมกันระหว่างอะตอมคู่ร่วมพันธะนั้นๆและมีจำนวนอิเล็กตรอนอยู่รอบๆ แต่ละอะตอมเป็นไปตามกฎออกเตต 

  เป็นพันธะที่เกิดจากการใช้อิเล็กตรอนข้างนอกร่วมกันระหว่างอะตอมของธาตุหนึ่งกับอีกธาตุหนึ่งแบ่งเป็น 3 ชนิดด้วยกัน
  1. พันธะเดี่ยว (Single covalent bond )เกิดจากการใช้อิเล็กตรอนร่วมกัน 1 อิเล็กตรอน เช่น F2 Cl2 CH4 เป็นต้น
 2. พันธะคู่ ( Doublecovalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกันของธาตุทั้งสองเป็นคู่ หรือ 2 อิเล็กตรอน เช่น O2 CO2 C2H4 เป็นต้น
3. พันธะสาม ( Triple covalent bond ) เกิดจากการใช้อิเล็กตรอนร่วมกัน 3 อิเล็กตรอน ของธาตุทั้งสอง เช่น N2 C2H2 เป็นต้น



การอ่านชื่อสารประกอบโควาเลนซ์

กล่องข้อความ: 1   อ่าน  มอนอ (mono-) 6   อ่าน  เฮกซะ (Hexa-)  2   อ่าน  ได (Di-)    7   อ่าน  เฮปตะ (Hepta-)  3   อ่าน  ไตร (Tri-)     8   อ่าน  ออกตะ (Oxta-)  4   อ่าน  เตตระ (Tetra-) 9   อ่าน  โมนะ (Mona-)  5   อ่าน เพนตะ (Penta-) 10 อ่าน  เดคะ (Deca-)

  • สารประกอบของธาตุคู่ ให้อ่านชื่อธาตุที่อยู่ข้างหน้าก่อน แล้วตามด้วยชื่อธาตุที่อยู่หลัง โดยเปลี่ยนเสียงพยางค์ท้ายเป็น “ ไอด์” (ide)
  • ให้ระบุจำนวนอะตอมของแต่ละธาตุด้วยเลขจำนวนในภาษากรีก ดังตาราง
  • ถ้าสารประกอบนั้นอะตอมของธาตุแรกมีเพียงอะตอมเดียว ไม่ต้องระบุจำนวนอะตอมของธาตุนั้น แต่ถ้าเป็นอะตอมของธาตุหลังให้อ่าน “ มอนอ” เสมอ

กล่องข้อความ: ตัวอย่าง  N2O3    อ่านว่า  ไดไนโตรเจนไตรออกไซด์  PCl5 อ่านว่า  ฟอสฟอรัสเพนตะคลอไรด์  CO อ่านว่า  คาร์บอนมอนอกไซด์

การพิจารณารูปร่างโมเลกุลโควาเลนต์  
  โมเลกุลโควาเลนต์ในสามมิตินั้น สามารถพิจารณาได้จากการผลักกันของอิเล็กตรอนที่มีอยู่รอบๆ อะตอมกลางเป็น สำคัญ โดยอาศัยหลักการที่ว่า อิเล็กตรอนเป็นประจุลบเหมือนๆ กัน ย่อมพยายามที่แยกตัวออกจากกนให้มากที่สุดเท่าที่จะกระทำได้ ดังนั้นการพิจารณาหาจำนวนกลุ่มของอิเล็กตรอนที่อยู่รอบๆ นิวเคลียสและอะตอมกลาง จะสามารถบ่งบอกถึงโครงสร้างของโมเลกุลนั้นๆได้โดยที่กลุ่มต่างๆ
- อิเล็กตรอนคู่โดดเดี่ยว
- อิเล็กตรอนคู่รวมพันธะได้แก่ พันธะเดี่ยว พันธะคู่ และพันธะสาม


  ทั้งนี้โดยเรียงตามลำดับความสารารถในการผลักอิเลคตรอนกลุ่มอื่นเนื่องจากอิเลคตรอนโดดเดี่ยวและอิเลคตรอนที่ สร้างพันธะนั้นต่างกันตรงที่อิเล็กตรอนโดยเดี่ยวนั้นถูกยึดด้วยอะตอมเพียงตัวเดียว ในขณะที่อิเล็กตรอนที่ใช้สร้างพันธะถูกยึดด้วยอะตอม 2 ตัวจึงเป็นผลให้อิเลคตรอนโดดเดี่ยวมีอิสระมากกว่าสามารถครองพื้นที่ในสามมิตได้มากกว่า ส่วนอิเล็กตรอนเดี่ยวและอิเล็กตรอนคู่โดดเดี่ยว รวมไปถึงอิเล็กตรอนคู่ร่วมพันธะแบบต่าง ๆ นั้นมีจำนวนอิเลคตรอนไม่เท่ากันจึงส่งผลในการผลักอิเลคตรอนกลุ่มอื่นๆ ได้มีเท่ากัน โครงสร้างที่เกิดจกการผลักกันของอิเล็กตรอนนั้น สามารถจัดเป็นกลุ่มได้ตามจำนวนของอิเล็กรอนที่มีอยู่ได้ตั้งแต่ 1 กลุ่ม 2 กลุ่ม 3 กลุ่ม ไปเรื่อยๆ เรียกวิธีการจัดตัวแบบนี้ว่า ทฤษฎีการผลักกันของคู่อิเล็กตรอนวงนอก (Valence Shell Electron Pair Repulsion : VSEPR) 


แรงยึดเหนี่ยวระหว่างโมเลกุล ( Van de waals interaction)
   เนื่องจากโมเลกุลโควาเลนต์ปกติจะไม่ต่อเชื่อมกันแบบเป็นร่างแหอย่างพันธะโลหะหรือไอออนิก แต่จะมีขอบเขตที่แน่นอนจึงต้องพิจารณาแรงยึดเหนี่ยวระหว่างโมเลกุลด้วย ซึ่งจะเป็นส่วนที่ใช้อธิบายสมบัติทางกายภาพของโมเลกุลโควาเลนต์ อันได้แก่ ความหนาแน่น จุดเดือด จุดหลอมเหลว หรือความดันไอได้ โดยแรงยึดเหนี่ยวระหว่างโมเลกุลนั้นเกิดจากแรงดึงดูดเนื่องจากความแตกต่างของประจุเป็นสำคัญ ได้แก่
1. แรงลอนดอน ( London Force) เป็นแรงที่เกิดจากการดึงดูดทางไฟฟ้าของโมเลกุลที่ไม่มีขั้วซึ่งแรงดึงดูดทางไฟฟ้านั้นเกิดได้จากการเลื่อนที่ของอิเล็กตรอนอย่างเสียสมดุลทำให้เกิดขั้วเล็กน้อย และขั้วไฟฟ้าเกิดขึ้นชั่วคราวนี้เอง จะเหนี่ยวนำกับโมเลกุลข้างเคียงให้มีแรงยึดเหนี่ยวเกิดขึ้น
2. แรงดึงดูดระหว่างขั้ว (Dipole-Dipole interaction)เป็นแรงยึดเหนี่ยวที่เกิดระหว่างโมเลกุลที่มีขั้วสองโมเลกุลขึ้นไปเป็นแรงดึงดูดทางไฟฟ้าที่แข็งแรงกว่าแรงลอนดอน เพราะเป็นขั้นไฟฟ้าที่เกิดขึ้นอย่างถาวร โมเลกุลจะเอาด้านที่มีประจุตรงข้ามกันหันเข้าหากัน ตามแรงดึงดูดทางประจุ เช่น H2O HCl H2S และ CO เป็นต้น ดังภาพ
3. พันธะไฮโดรเจน ( hydrogen bond ) เป็นแรงยึดเหนี่ยวที่มีค่าสูงมาก โดยเกิดระหว่างไฮโดรเจนกับธาตุที่มีอิเล็กตรอนคู่โดดเดี่ยวเหลือ เกิดขึ้นได้ต้องมีปัจจัยต่างๆ ได้แก่ ไฮโดรเจนที่ขาดอิเล็กตรอนอันเนื่องจากถูกส่วนที่มีค่าอิเล็กโตรเนกาติวิตีสูงในโมเลกุลดึงไป จนกระทั้งไฮโดรเจนมีสภาพเป็นบวกสูงและจะต้องมีธาตุที่มีอิเลคตรอนคู่โดดเดี่ยวเหลือและมีความหนาแน่นอิเลคตรอนสูงพอให้ไฮโดรเจนที่ขาดอิเลคตรอนนั้น เข้ามาสร้างแรงยึดเหนี่ยวด้วยได้เช่น H2O HF NH3 เป็นต้น 

พันธะโลหะ
 พันธะโลหะ (Metallic Bond ) คือ แรงดึงดูดระหว่างไออนบวกซึ่งเรียงชิดกันกับอิเล็กตรอนที่อยู่โดยรอบหรือเป็นแรงยึดเหนี่ยวที่เกิดจากอะตอมในก้อนโลหะใช้เวเลนส์อิเล็กตรอนทั้งหมดร่วมกัน อิเล็กตรอนอิสระเกิดขึ้นได้ เพราะโลหะมีวาเลนส์อิเล็กตรอนน้อยและมีพลังงานไอออไนเซชันต่ำ จึงทำให้เกิดกลุ่มของอิเล็กตรอนและไอออนบวกได้ง่าย 
พลังงานไอออไนเซชันของโลหะมีค่าน้อยมาก   แสดงว่าอิเล็กตรอนในระดับนอกสุดของโลหะถูกยึดเหนี่ยวไว้ไม่แน่นหนา   อะตอมเหล่านี้จึงเสียอิเล็กตรอนกลายเป็นไอออนบวกได้ง่าย   เมื่ออะตอมของโลหะมารวมกันเป็นกลุ่ม  ทุกอะตอมจะนำเวเลนซ์อิเล็กตรอนมาใช้ร่วมกัน   โดยอะตอมของโลหะจะอยู่ในสภาพของไอออนบวก ส่วนเวเลนซ์อิเล็กตรอนทั้งหมดจะอยู่เป็นอิสระไม่ได้เป็นของอะตอมใดอะตอมหนึ่งโดยเฉพาะแต่สามารถเคลื่อนที่ไปได้ทั่วทั้งก้อนโลหะและเนื่องจากอิเล็กตรอนเคลื่อนที่เร็วมาก จึงมีสภาพคล้ายกับมีกลุ่มหมอกอิเล็กตรอนปกคลุมก้อนโลหะนี้นอยู่   เรียกว่า ทะเลอิเล็กตรอน โดยมีไอออนบวกฝังอยู่ในกลุ่มหมอกอิเล็กตรอนซึ่งเป็นลบ   จึงเกิดแรงดึงดูดที่แน่นหนาทั่วไปทุกตำแหน่งภายในก้อนโลหะนั้น


สมบัติของโลหะ
  • เป็นตัวนำไฟฟ้าได้ดี เพราะมีอิเล็กตรอนเคลื่อนที่ไปได้ง่ายทั่วทั้งก้อนของโลหะ   แต่โลหะนำไฟฟ้าได้น้อยลงเมื่ออุณหภูมิสูงขึ้น   เนื่องจากไอออนบวกมีการสั่นสะเทือนด้วยความถี่และช่วงกว้างที่สูงขึ้นทำให้อิเล็กตรอนเคลื่อนที่ไม่สะดวก
  • โลหะนำความร้อนได้ดี  เพราะมีอิเล็กตรอนที่เคลื่อนที่ได้   โดยอิเล็กตรอนซึ่งอยู่ตรงตำแหน่งที่มีอุณหภูมิสูง  จะมีพลังงานจลน์สูง และอิเล็กตรอนที่มีพลังงานจลน์สูงจะเคลื่อนที่ไปยังส่วนอื่นของโลหะจึงสามารถถ่ายเทความร้อนให้แก่ส่วนอื่น ๆ ของแท่งโลหะที่มีอุณหภูมิต่ำกว่าได้ 
  • โลหะตีแผ่เป็นแผ่นหรือดึงออกเป็นเส้นได้   เพราะไอออนบวกแต่ละไอออนอยู่ในสภาพเหมือนกันๆ กัน   และได้รับแรงดึงดูดจากประจุลบเท่ากันทั้งแท่งโลหะ ไอออนบวกจึงเลื่อนไถลผ่านกันได้โดยไม่หลุดจากกัน   เพราะมีกลุ่มของอิเล็กตรอนทำหน้าที่คอยยึดไอออนบวกเหล่านี้ไว้
  • โลหะมีผิวเป็นมันวาว   เพราะกลุ่มของอิเล็กตรอนที่เคลื่อนที่ได้โดยอิสระจะรับและกระจายแสงออกมา   จึงทำให้โลหะสามารถสะท้อนแสงซึ่งเป็นคลื่นแม่เหล็กไฟฟ้าได้
  • โลหะมีจุดหลอมเหลวสูง  เพราะพันธะในโลหะ   เป็นพันธะที่เกิดจากแรงยึดเหนี่ยวระหว่างวาเลนซ์อิเล็กตรอนอิสระทั้งหมดในด้อนโลหะกับไอออนบวกจึงเป็นพันธะที่แข็งแรงมาก

บทที่ 3 พันธะเคมี

บทที่ 3 พันธะเคมี

 สารในชีวิตประจำวันเช่นแก๊สออกซิเจนและแก๊สคาร์บอนไดออกไซด์ที่เกี่ยวข้องกับกระบวนการหายใจของสิ่งมีชีวิตน้ำเป็นของเหลวที่ใช้ในการอุปโภคและบริโภคเกลือแกงเป็นของแข็งที่ใช้ในการประกอบอาหารสารเหล่านี้ส่วนใหญ่ไม่อยู่ในรูปอะตอมเดี่ยวแต่ประกอบด้วยหลายอะตอมซึ่งอาจเป็นอะตอมชนิดเดียวกันหรือต่างชนิดกันการยึดเหนี่ยวกันของอะตอมหรือไอออนในสารเรียกว่าพันธะเคมี 3.1 ลักษณะแบบจุดของลิวอิสและกฎออกเตต

จากการศึกษาเรื่องอะตอมและสมบัติของธาตุทำให้ทราบว่าเวเลนซ์อิเล็กตรอนเป็นอิเล็กตรอนที่อยู่ในระดับพลังงานสูงสุดหรือชั้นนอกสุดของอะตอมธาตุคาร์บอนมีการจัดเรียงอิเล็กตรอนในระดับพลังงานย่อยเป็น 1s^2 2s^2 2p^2 ดังนั้น คาร์บอนมีเวเลนซ์อิเล็กตรอนเท่ากับ 4 ทั้งนี้การเกิดพันธะเคมีเกี่ยวข้องกับเวเลนซ์อิเล็กตรอนของอะตอมที่ร่วมสร้างพันธะกัน
เวเลนซ์อิเล็กตรอนของธาตุอาจแสดงด้วยจุดสัญลักษณ์ที่แสดงธาตุและเวเลนซ์อิเล็กตรอนของธาตุเรียกว่า สัญลักษณ์แบบจุดของลิวอิสซึ่งเสนอโดย กิลเบิร์ต นิวตัน ลิวอิส สัญลักษณ์แบบจุดของลิวอิสใช้จุดแสดงจำนวนเวเลนซ์อิเล็กตรอนรอบสัญลักษณ์ของธาตุดังรูป


ธาตุต่างๆส่วนใหญ่ไม่เสถียรในรูปอะตอมเดี่ยวยกเว้นเพื่อนในหมู่ 18 หรือเรียกว่าแก๊สมีสกุลที่ผมอยู่ในรูปอะตอมเดี่ยวซึ่งมีจำนวนเวเลนซ์อิเล็กตรอนเท่ากับ 8 ยกเว้นฮีเลียมซึ่งมี 2 เวเลนซ์อิเล็กตรอนนอกจากนี้นักเคมี ยังพบว่าอะตอมของธาตุอื่นๆมีแนวโน้มที่จะรวมตัวกัน เพื่อที่จะทำให้แต่ละอะตอมมีเวเลนซ์อิเล็กตรอนเท่ากับ 8 จึงมีการสรุปเป็นหลักการที่เกี่ยวกับกฎออกเตต ศาลที่ไม่อยู่ในรูปอะตอมเดี่ยวมีพันธะเคมีระหว่างอะตอมหรือไอออนโดยที่อะตอมของธาตุจะมีการให้อิเล็กตรอนรับอิเล็กตรอนหรือใช้อิเล็กตรอนร่วมกันทำให้เกิดพันธะเคมีสารประเภทได้แก่พันธะไอออนิกพันธะโคเวเลนต์และพันธะโลหะ 3.2 พันธะไอออนิก
สารที่เกิดจากธาตุโลหะกับธาตุอโลหะ มีสมบัติบางประการทางการและสารเหล่านี้มีการยึดเหนี่ยวระหว่างอนุภาคที่เหมือนกัน
3.2.1 การเกิดพันธะไอออนิก
ธาตุโลหะมีพลังงานไอออไนเซชันต่ำจึงเสียอิเล็กตรอนเกิดเป็นไอออนบวกได้ง่ายส่วนธาตุอโลหะมีค่าสัมพรรคภาพอิเล็กตรอนสูง จึงรับอิเล็กตรอนเกิดเป็นไอออนลบ ไอออนบวกและไอออนลบมีประจุไฟฟ้าต่างกันจึงยึดเหนี่ยวกันด้วยแรงดึงดูดระหว่างประจุไฟฟ้าเรียกการยึดเหนี่ยวนี้ว่าพันธะไอออนิกและสารที่เกิดขึ้นจากพันธะไอออนิกว่าสารประกอบไอออนิกชื่อสารประกอบไอออนิกที่เกิดขึ้นส่วนใหญ่เป็นไปตามกฎออกเตตดังตัวอย่าง

                         

สารประกอบไอออนิกในสถานะของแข็งอยู่ในรูปของผลึกที่มีไอออนบวกและไอออนลบยึดเหนี่ยวกันด้วยพันธะไอออนิกอย่างต่อเนื่องกันไปทั้ง 3 มิติเป็นโครงผลึก และไม่อยู่ในรูปโมเลกุล


3.2.2 สูตรเคมีและชื่อของสารประกอบไอออนิก สารประกอบไอออนิกประกอบด้วยไอออนบวกและไอออนลบที่มีประจุต่างกัน ซึ่งมีผลต่ออัตราส่วนการรวมของไอออนและสูตรของสารประกอบไอออนิกด้วยประจุของไอออน 5 มูลหลักเป็นบวกตามจำนวนและการที่ให้หรือเป็นโรคตามจำนวนอิเล็กตรอนที่รับเพื่อทำให้มีการจัดเรียงอิเล็กตรอนของไอออนเป็นไปตามกฎออกเตต

จากตาราง 3.1 ถ้าโซเดียมซึ่งเป็นธาตุหมู่ IA เมื่อเกิดเป็นไอออนบวกจะมีประจุเป็นบวก 1 5 แคลเซียมซึ่งเป็นธาตุหมู่ IIIA เมื่อเกิดเป็นไอออนบวกจะมีประจุเป็นบวก 2 และธาตุอะลูมิเนียมซึ่งเป็นธาตุหมู่ IIIA เมื่อเกิดเป็นไอออนบวกจะมีประจุเป็นบวก 3 ดังนั้นธาตุหมู่ IA IA และ IIA เมื่อเป็นไอออนจะเป็นไอออนที่มีประจุตามเลขหมู่ 5 กรณีซึ่งเป็นธาตุหมู่ VIIA เมื่อเกิดเป็นไอออนลบจะมีประจุเป็น -1 ให้ออกซิเจนซึ่งเป็นธาตุหมู่ VIIA เมื่อเกิดเป็นไอออนลบจะมีประจุเป็น -2 และธาตุไนโตรเจนซึ่งเป็นธาตุหมู่ VA เมื่อเกิดเป็นไอออนลบจะมีประจุเป็น -3 ดังนั้นธาตุหมู่ VA VIA และ VIIA เมื่อเป็นไอออน จะเป็นไอออนลบที่มีประจุ X-8 เมื่อ X คือเลขหมู่ของธาตุอโลหะ
การที่โครงสร้างของสารประกอบไอออนิกที่มีไอออนบวกและไอออนลบยึดเหนี่ยวกันอย่างต่อเนื่องกันไปทั้ง 3 มิติเป็นโครงผลึกไม่สามารถแยกเป็นโมเลกุลได้ดังนั้นจึงใช้สูตรเอมพิริคัล แสดงอัตราส่วนอย่างต่ำของจำนวนไอออนที่เป็นองค์ประกอบซึ่งทำให้ได้ผลรวมประจุเป็นศูนย์
การเขียนสูตรสารประกอบไอออนิกจะเขียนสัญลักษณ์ของธาตุที่เป็นไอออนบวกไว้ข้างหน้าตามด้วยไอออนลบและแสดงอัตราส่วนอย่างต่ำของไอออนที่เป็นองค์ประกอบโดยเขียนตัวเลขอารบิกให้ทายไอออนทั้งนี้กรณีที่จำนวนไอออนเป็นหนึ่งไม่ต้องเขียนเช่นสารประกอบไอออนิกที่เกิดจากแคลเซียมไอออนกับฟลูออไรด์ไอออนมีอัตราส่วนประจุของ Ca^2+ ต่อ F^- เป็น 2 ต่อ 1 ซึ่งเมื่อทำให้ผลรวมของประจุเป็นศูนย์จะได้อัตราส่วนอย่างต่ำของจำนวน Ca^2+ ต่อ F^- เป็น 1:2 ดังนั้นสูตรสารประกอบเป็น CaF^2


ไอออนบางชนิดเกิดจากกลุ่มอะตอมการเขียนสูตรสารประกอบจะใช้หลักการเดียวกับไอออนบวกและไอออนลบที่เกิดจากธาตุ เช่นสูตรสารประกอบไอออนิกที่เกิดจากมีไอออนกับซัลเฟตไอออนมีอัตราส่วนประจุของ NH^4+ ต่อ SO4^2- เป็น 1 ต่อ 2 ซึ่งเมื่อทำให้ผลรวมของประจุเป็นศูนย์ จะได้อัตราส่วนอย่างต่ำของจำนวน NH^4+ ต่อ SO4^2- เป็น 2:1 ดังนั้นสูตรสารประกอบเป็น (NH4)2SO4


สารประกอบไอออนิกเกิดจากไอออนบวกและไอออนลบดังนั้นการเรียกชื่อสารประกอบไอออนิกจึงจำเป็นต้องสร้างชื่อของไอออนบวกและไอออนลบโดยชื่อของไอออนบวกเรียกตามชื่อถ้าเราลงท้ายด้วยคำว่าไอออนส่วนไอออนลบเรียกตามชื่อธาตุโดยเปลี่ยนท้ายเสียงเป็น i-de


จากตารางจะเห็นว่าชื่อไอออนลบของธาตุไฮโดรเจนออกซิเจนและไนโตรเจนมีการตัดคำว่าเช่นออกก่อนจะเปลี่ยนท้ายเป็นเสียง i-de ไอออนที่เป็นกลุ่มอะตอมมีชื่อเรียกเฉพาะโดยกลุ่มอะตอมที่เป็นไอออนบวกลงท้ายด้วย -ium ส่วนกลุ่มอะตอมที่เป็นไอออนลบอาจจะลงท้ายด้วยเสียง -ide -ite -ate
ชื่อสารประกอบไอออนิกได้จากการเรียกชื่อไอออนบวกแล้วตามด้วยชื่อไอออนลบโดยตัดคำว่าไอออนออก ดังตาราง


ชื่อสารประกอบที่เกิดจากโลหะที่มีเลขออกซิเดชันมากกว่า 1 ค่า ต้องระบุตัวเลขประจุหรือเลข ออกซิเดชันของไอออนนั้นเป็นเลขโรมันในวงเล็บดังตาราง



3.2.3 พลังงานกับการเกิดสารประกอบไอออนิก
ปฏิกิริยาเคมีนอกจากจะเกี่ยวข้องกับการเปลี่ยนแปลงของสารเคมีแล้วส่วนใหญ่ยังเกี่ยวข้องกับการเปลี่ยนแปลงพลังงานอีกด้วยซึ่ง พลังงานการเกิดของสารประกอบ สามารถหาได้จากการทดลองในการทำปฏิกิริยาระหว่างธาตุ เช่นการเกิดสารประกอบโซเดียมคลอไรด์จากโลหะโซเดียมทำปฏิกิริยากับแก๊สคลอรีนเกิดเป็นโซเดียมคลอไรด์มีการคายพลังงาน 412 กิโลจูลต่อโมล

Na(s) + 1/2Cl2(g) ---> NaCl(s) -412kJ/mol

ปฏิกิริยาเคมีเกี่ยวข้องกับการสลายพันธะและการสร้างพันธะ ซึ่งการสลายพันธะ เป็นกระบวนการดูดพลังงาน ในขณะที่การสร้างพันธะเป็นกระบวนการคายพลังงานดังนั้นปฏิกิริยาที่เกิดขึ้นจากการรวมตัวกันของไอออนบวกและไอออนลบเกิดเป็นสารประกอบไอออนิกเป็นปฏิกิริยาคายพลังงานเนื่องจากมีการสร้างพันธะไอออนิก
พลังงานที่เกี่ยวข้องกับการรวมตัวกันของไอออนบวกและไอออนลบในสารประกอบไอออนิกเรียกว่าพลังงานโครงผลึกซึ่งในทางปฏิบัติไม่สามารถทำการทดลองได้โดยนำไอออนบวกและไอออนลบที่บริสุทธิ์มาทำปฏิกิริยากันได้ค่าพลังงานดังกล่าวจึงได้จากการคำนวณโดยอาศัยขั้นตอนการเกิดปฏิกิริยาย่อยๆหลายขั้นตอนตามวัฏจักรบอร์น-ฮาเบอร์ โดยมีสมมติฐานว่าพลังงานรวมในแต่ละขั้นตอนจะเท่ากับพลังงานในการเกิดสารประกอบไอออนิกเช่นการเกิดสารประกอบโซเดียมคลอไรด์ 1 โมล ประกอบด้วยขั้นตอนต่างๆดังนี้
1.โลหะโซเดียมสถานะของแข็งระเหิดกลายเป็นแก๊ส ดูดพลังงาน 107 กิโลจูลต่อโมล เรียกพลังงานที่ใช้ในขั้นนี้ว่าพลังงานการระเหิด

Na(s) ---> Na(g) 107kJ/mol

2.อะตอมของโซเดียมในสถานะแก๊สเสียอิเล็กตรอนกลายเป็น Na^+ ดูดพลังงาน 496 กิโลจูลต่อโมล เรียกพลังงานที่ใช้ในขั้นนี้ว่า พลังงานไอออไนเซชัน

Na(g) ---> Na^+(g) + e^- 496kJ/mol

3.โมเลกุลแก๊สคลอรีนสลายพันธะ Cl-Cl ได้อะตอมคลอรีน 2 อะตอมในสถานะแก๊ส ดูดพลังงานเท่ากับ 242 กิโลจูลต่อโมล เรียกพลังงานที่ใช้ในขั้นนี้ว่า พลังงานพันธะ

Cl2(g) ---> 2Cl(g) 242kJ/mol

แต่เนื่องจาก NaCl 1 โมลประกอบด้วย Cl^- 1โมลไอออน ดังนั้นพลังงานที่ใช้ในขั้นนี้จะเป็นครึ่งหนึ่งของพลังงานการสลายพันธะต่อโมลของ Cl2 นั่นคือจะใช้พลังงานเพียง 121 กิลโลจูล

1/2Cl2(g) ---> Cl(g) 121kJ

4.อะตอมคลอรีนในสถานะแก๊สเมื่อรับอิเล็กตรอนที่หลุดออกจากอะตอมโซเดียมแล้วกลายเป็น Cl^- จะคายพลังงาน 349 กิโลจูลต่อโมล พลังงานที่ได้ในขั้นนี้เรียกว่า สัมพรรคภาพอิเล็กตรอน

Cl(g) + e^- ---> Cl^-(g) -349kJ/mol

5.เมื่อโซเดียมไอออนกับคลอไรด์ไอออนในสถานะแก๊สกันเป็นผลึกโซเดียมคลอไรด์จะคายพลังงานออกมาพลังงานที่ได้ในครั้งนี้เรียกว่า พลังงานของผลึก หรือ พลังงานแลตทิซ


Na^+ + Cl^- (g) ---> NaCl(s) พลังงานโครงผลึก

เมื่อรวมสมการของปฏิกิริยาย่อยทั้ง 5 ขั้นจะเหลือ Na และ Cl2 เป็นสารตั้งต้น และเหลือ NaCl เป็นผลิตภัณฑ์โดยสารอื่นๆและอิเล็กตรอนจะหักล้างกันหมดดังนี้



ซึ่งปฏิกิริยารวมที่ได้เหมือนกับปฏิกิริยาการเกิดสารประกอบโซเดียมคลอไรด์ดังสมการ

Na(s) +1/2Cl2(g) ---> NaCl(s)

และมีค่าพลังงานรวม = 107 + 496 + 121 + (-349) + พลังงานแลตทิซ

เนื่องจากพลังงานการเกิดสารประกอบโซเดียมคลอไรด์ซึ่งสามารถหาได้จากการทดลองมีค่าเป็น -412 kJ/mol ดังนั้นสามารถคำนวณหาค่าพลังงานแลตทิซดังนี้

-412 = 107 + 496 + 121 + (-349) + พลังงานแลตทิซ

พลังงานแลตทิซ = -787kJ/mol

ค่าพลังงานแลตทิซที่คำนวณได้มีค่าเป็นลบแสดงว่าการรวมตัวกันของโซเดียมไอออนและคลอไรด์ไอออนทำให้เกิดการคายพลังงานในทางตรงกันข้ามการสลายพันธะระหว่างโซเดียมไอออนและคลอไรด์ไอออนในโครงผลึกของโซเดียมคลอไรด์จะเป็นกระบวนการดูดพลังงานซึ่งจะมีเครื่องหมายและค่าพลังงานเป็นบวก

วัฏจักรบอร์นฮาเบอร์ ของการเกิดสารประกอบโซเดียมคลอไรด์แอนด์เขียนเป็นแผนภาพเพื่อแสดงการเปลี่ยนแปลงพลังงานได้ดังรูป



  จากรูปจะสังเกตเห็นได้ว่าพลังงานที่ได้จากขั้นตอนการพลังงานมีค่ามากกว่าพลังงานที่ได้จากขั้นตอนดูดพลังงานจึงทำให้เกิดสารประกอบโซเดียมคลอไรด์เป็นปฏิกิริยาคายพลังงาน
          3.2.4 สมบัติของสารประกอบไอออนิก
                      สารประกอบไอออนิกส่วนใหญ่เป็นผลึกที่แข็งเนื่องจากการยึดเหนี่ยวที่แข็งแรงระหว่างไอออนบวกและไอออนลบและผลึกของสารประกอบไอออนิกมีความเปราะ แตกหักได้ง่ายเนื่องจากการเลื่อนตำแหน่งเพียงเล็กน้อยของไอออนเมื่อมีแรงกระทำอาจทำให้ไอออนชนิดเดียวกันลื่นไถลไปอยู่ตำแหน่งตรงกลางจึงเกิดแรงผลักระหว่างกันดังรูป


    จากรูปจะสังเกตเห็นได้ว่าพลังงานที่ได้จากขั้นตอนการพลังงานมีค่ามากกว่าพลังงานที่ได้จากขั้นตอนดูดพลังงานจึงทำให้เกิดสารประกอบโซเดียมคลอไรด์เป็นปฏิกิริยาคายพลังงาน              
สารประกอบไอออนิกสถานะของแข็งไม่นำไฟฟ้าเนื่องจาก ไอออนที่เป็นองค์ประกอบยึดเหนี่ยวกันอย่างแข็งแรงไม่สามารถเคลื่อนที่ได้แต่เมื่อหลอมเหลวหรือละลายน้ำจะนำไฟฟ้าได้ดีเนื่องจากไอออนที่เป็นองค์ประกอบยึดเหนี่ยวกันอย่างแข็งแรงไม่สามารถเคลื่อนที่ได้ แต่เมื่อหลอมเหลวหรือละลายน้ำจะนำไฟฟ้าได้เนื่องจากไอออนสามารถเคลื่อนที่ได้ สารประกอบไอออนิกมีจุดหลอมเหลวและจุดเดือดสูงส่วนใหญ่ละลายน้ำได้และสารละลายของสารประกอบไอออนิกในน้ำส่วนใหญ่มีสมบัติเป็นเบสหรือกลางโดยสารละลายของสารประกอบออกไซด์มีสมบัติเป็นเบสและสารละลายของสารประกอบคลอไรด์มีสมบัติเป็นกลาง ดังตาราง


การละลายน้ำของสารประกอบไอออนิกเกี่ยวข้องกับกระบวนการที่ไอออนบวกและไอออนลบแยกออกจากโครงผลึกและเป็นกระบวนการที่โมเลกุลของน้ำล้อมรอบไอออนแต่ละชนิดโดยสารที่เมื่อละลายน้ำแล้วแตกตัวเป็นไอออนเรียกสามีว่าสารละลายอิเล็กโทรไลต์


กระบวนการที่ไอออนบวกและไอออนลบแยกออกจากโครงผลึกเป็นกระบวนการดูดพลังงานที่มีค่าเท่ากับพลังงานและแลตทิซ ดังที่ได้กล่าวมาแล้ว ส่วนกระบวนการที่โมเลกุลของน้ำล้อมรอบไอออนแต่ละชนิดเป็นกระบวนการคายพลังงานที่เรียกว่า พลังงานไฮเดรชัน
ถ้าค่าพลังงานแลตทิซ น้อยกว่าค่าพลังงานไฮเดรชันการละลายจะเป็นกระบวนการคายพลังงานซึ่งจะทำให้อุณหภูมิของสารละลายสูงขึ้นและสารละลายจะละลายได้ดีที่อุณหภูมิต่ำในทางกลับกันถ้าค่าพลังงานแลตทิซมากกว่าค่าพลังงานไฮเดรชันการละลายจะเป็นกระบวนการดูดพลังงานซึ่งจะทำให้อุณหภูมิของสารละลายลดลงและสารจะละลายได้ดีที่อุณหภูมิสูงในกรณีที่มีค่าพลังงานแลตทิซมากกว่าพลังงานไฮเดรชันมากๆ สารอาจจะละลายได้น้อยมากหรือไม่ละลาย
จากที่ทราบแล้วว่าสารประกอบไอออนิกเมื่อละลายน้ำไอออนบวกและไอออนลบจะแยกออกจากกันถ้าการผสมสารละลายของสารประกอบไอออนิกทำให้เกิดตะกอนแสดงว่าไอออนในสารละลายผสมทำปฏิกิริยากันเกิดเป็นสารใหม่ที่ไม่ละลายน้ำ ดังรูป



ปฏิกิริยาการเกิดตะกอนของสารประกอบไอออนิกในน้ำอาจเขียนแทนด้วยสมการไอออนิก ที่แสดงไอออนในสารละลายครบทุกชนิดเช่นปฏิกิริยาระหว่างสารละลายซิลเวอร์ไนเตรตกับสารละลายโซเดียมคลอไรด์เขียนสมการไอออนิกได้ดังนี้

Ag^+(aq) + NO3^-(aq) + Na^+(aq) + Cl^-(aq) ---> AgCl(s) + NO3^-(aq) + Na^+(aq)

ไอออนในสมการของปฏิกิริยาที่มีน้ำเป็นตัวทำละลายแสดงสถานะไอออนเป็น aq ซึ่งมาจากคำว่า a queous solution เนื่องจากในสมการไอออนิกมีไอออนที่ไม่ทำปฏิกิริยาการปรากฏอยู่ทางด้านซ้ายและด้านขวาของสมการที่สามารถตัดออกจากสมการให้เหลือเฉพาะไอออนที่ทำปฏิกิริยากันได้เป็นผลิตภัณฑ์เรียกว่า สมการไอออนสุทธิ

Ag^+(aq) + Cl^-(aq) ---> AgCl(s)

การอธิบายหรือการทำนายปฏิกิริยาการเกิดตะกอนของสารละลายของสารประกอบไอออนิก สามารถพิจารณาได้จากสมบัติการละลายน้ำตามหลักการเบื้องต้นดังนี้
สารประกอบที่ละลายน้ำ
-สารประกอบของโลหะแอลคาไลและแอมโมเนียทุกชนิด
-สารประกอบไนเทรต คลอเรต เปอร์คลอเรต แอซีเตต
-สารประกอบคลอไรด์ โบรไมด์ ไอโอไดด์
-สารประกอบคอร์บอเนต ฟอสเฟต ซัลไฟด์ และซัลไฟต์
-สารประกอบซัลเฟต
สารประกอบที่ไม่ละลายน้ำ
-สารประกอบออกไซด์ของโลหะ
-สารประกอบไฮดรอกไซด์
3.3 พันธะโคเวเลนต์
สารที่เกิดจากธาตุอโลหะรวมตัวกันเช่นแก๊สออกซิเจนแก๊สไนโตรเจนและแก๊สคาร์บอนไดออกไซด์ การยึดเหนี่ยวระหว่างอะตอมของธาตุในสารเหล่านี้เป็นพันธะไอออนิกหรือไม่เพราะเหตุใด
3.3.1 การเกิดพันธะโคเวเลนต์
ธาตุอโลหะมีค่าอิเล็กโทรเนกาติวิตีสูงดังนั้นเมื่อรวมตัวกันจะไม่มีอะตอมใดยอมเสียอิเล็กตรอน อะตอมจึงยึดเหนี่ยวกันโดยใช้เวเลนซ์เล็กตรอนร่วมกันเรียกการยึดเหนี่ยวในว่าพันธะโคเวเลนต์แล้วนะสารที่อะตอมยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์ว่าสารโคเวเลนต์ซึ่งส่วนใหญ่อยู่ในรูปโมเลกุลโดยการเกิดพันธะในโมเลกุลโคเวเลนต์ส่วนใหญ่เป็นไปตามกฎออกเตตดังตัวอย่าง
คลอรีนมีเวเลนซ์อิเล็กตรอนเท่ากับ 7 ดังนั้นข้อดีทั้ง 2 อะตอมจะใช้เวลาดิจิตอลร่วมกัน 1 คู่เพื่อให้มีเวเลนซ์อิเล็กตรอนครบ 8 ตามกฎออกเตต เขียนแผนภาพและสัญลักษณ์แบบจุดของลิวอิสแสดงการเกิดพันธะได้ดังนี้


พันธะโคเวเลนต์ในโมเลกุลแก๊สคลอรีนเกิดจากการใช้เวเลนซ์อิเล็กตรอนร่วมกัน 1 คู่พันธะนี้เรียกว่าพันธะเดี่ยว ด้วยอิเล็กตรอนคู่ที่ใช้ร่วมกันในการเกิดพันธะเรียกว่าอิเล็กตรอนคู่ร่วมพันธะส่วนอิเล็กตรอนคู่ที่ไม่ได้เกิดพันธะเรียกว่าอิเล็กตรอนคู่โดดเดี่ยวซึ่งในโมเลกุลแก๊สคลอรีนมีอิเล็กตรอนคู่ร่วมพันธะ 1 คู่และมีอิเล็กตรอนคู่โดดเดี่ยว 6 คู่


อีกทั้งยังมีการเกิดพันธะในโมเลกุล ออกซิเจนแต่ละอะตอมมีเวเลนซ์อิเล็กตรอนเท่ากับ 6 ดังนั้นออกซิเจนทั้ง 2 อะตอมจะใช้เวทีเล็กตอนร่วมกัน 2 คู่เพื่อให้เป็นไปตามกฎออกเตต เกิดพันธะโคเวเลนต์แบบพันธะคู่ นอกจากนี้พันธะโคเวเลนต์ยังอาจเป็นพันธะสาม เช่นในโมเลกุลแก๊สไนโตรเจนไนโตรเจนแต่ละอะตอมมีเวเลนซ์อิเล็กตรอนเท่ากับ 5 ดังนั้นไนโตรเจนทั้ง 2 อะตอมจะใช้เวลาที่เล็กตอนร่วมกัน 3 คู่เพื่อให้เป็นไปตามกฎออกเตต
ในโครงสร้างลิวอิส อิเล็กตรอนคู่ร่วมพันธะสามารถแสดงได้ด้วยเส้นพันธะในขณะที่อิเล็กตรอนคู่โดดเดี่ยวแสดงด้วยจุดคู่เสมอเช่นโมเลกุลแอมโมเนียมีเส้นพันธะ N-H 3 พันธะ แทนอิเล็กตรอนคู่ร่วมพันธะ 3 คู่ ในขณะที่อีเล็คตรอนคู่โดดเดี่ยว 1 คู่แสดงด้วยจุดคู่บนอะตอมไนโตรเจนอิเล็กตรอนคู่โดดเดี่ยวนี้สามารถสร้างพันธะกับ H^+ เกิดเป็นแอมโมเนียมไอออน จำนวนอิเล็กตรอนรอบอะตอมกลางยังคงเป็นไปตามกฎออกเตต ในกรณีที่พันธะโคเวเลนต์ที่เกิดขึ้นมาจากอะตอมไนโตรเจนเท่ากัน แสดงดังนี้


สารโคเวเลนต์บางชนิดอาจมีอะตอมกลางที่มีจำนวนอิเล็กตรอนล้อมรอบไม่เป็นไปตามกฎออกเตต
3.3.2 สูตรโมเลกุลและชื่อของสารโคเวเลนต์
สูตรโมเลกุลของสารโคเวเลนต์โดยทั่วไปเขียนสัญลักษณ์ของธาตุองค์ประกอบโดยเรียงลำดับจากค่าอิเล็กโทรเนกาติวิตีน้อยไปมากพร้อมทั้งระบุจำนวนอะตอมของธาตุที่มีจำนวนอะตอมมากกว่า 1 อะตอมยกเว้นสามารถชนิดเช่น NH3 และ CH4 ทั้งที่ถ้าไนโตรเจนและธาตุคาร์บอนมีอิเล็กโทรเนกาติวิตีสูงกว่าธาตุไฮโดรเจน
การเรียกชื่อสารโคเวเลนต์มีหลักการดังนี้
1.สารโคเวเลนต์ที่ประกอบด้วยธาตุชนิดเดียวกันเรียกตามชื่อท่านนั้นซึ่งท่านเหล่านี้ส่วนใหญ่มีสถานะเป็นแก๊สที่อุณหภูมิห้องจึงนิยมเรียกชื่อโดยระบุสถานะด้วยเพื่อให้ทราบว่าเป็นการกล่าวถึงโมเลกุลที่ไม่ใช่อะตอมของธาตุเช่นแก๊สออกซิเจน
2.สารโคเวเลนต์ที่ประกอบด้วยธาตุ 2 ชนิดให้เรียกชื่อธาตุตามลำดับที่ปรากฏในสูตรโมเลกุลโดยเปลี่ยนพยางค์ท้ายเป็น -ide และระบุจำนวนอะตอมองค์ประกอบ ในโมเลกุลด้วยคำภาษากรีก ดังตาราง


ยกเว้นกรณีที่ธาตุและมีเพียงอะตอมเดียวไม่ต้องระบุจำนวนอะตอมของธาตุนั้น
การเรียกชื่อสารโคเวเลนต์ที่เป็นสารประกอบออกไซด์นอกจากเรียกชื่อสารตามหลักการข้างต้นแล้วยังนิยมเรียกชื่อสารโดยแต่ละตัวสุดท้ายของคำที่ระบุจำนวนอะตอมออก เช่น CO นิยมเรียกว่าคาร์บอนมอนอกไซด์ นอกจากนี้สารบางชนิดยังมีเพียงชื่อเล่นโดยไม่เป็นไปตามหลักการข้างต้นครบทุกประการเช่น HCl นิยมเรียกว่าไฮโดรเจนคลอไรด์ แทนที่จะเรียกว่าไฮโดรเจนมอนอคลอไรด์
3.3.3 ความยาวพันธะและพลังงานพันธะของสารโคเวเลนต์
อะตอมไฮโดรเจน 2 อะตอมเคลื่อนที่เข้ากันจะเกิดแรงดึงดูดระหว่างอิเล็กตรอนของอะตอมหนึ่งกับโปรตอนในนิวเคลียสของอะตอมหนึ่งขณะเดียวกันก็มีแรงผลักระหว่างโปรตอนกับโปรตอนและอิเล็กตรอนกับอิเล็กตรอนของอะตอมทั้งสองด้วย แรงดึงดูดทำให้พลังงานศักย์ลดลงแต่แรงผลักทำให้พลังงานศักย์เพิ่มขึ้น ทำให้พลังงานศักย์รวมลดลงแล้วเพิ่มขึ้นตามระยะห่างระหว่างนิวเคลียสโดยมีผลรวมพลังงานศักย์ต่ำที่สุดเมื่อระยะทางระหว่างนิวเคลียสทั้งสองเท่ากับ 74 พิโกเมตร ถ้าอะตอมเคลื่อนที่เข้าใกล้กันมากกว่านี้และหากจะมีมากกว่าแรงดึงดูดซึ่งทำให้พลังงานศักย์รวมเพิ่มขึ้น


       จากรูประยะห่างระหว่างนิวเคลียสที่ทำให้พลังงานศักย์รวมต่ำที่สุดเรียกว่าความยาวพันธะ ในทางปฏิบัติความยาวพันธะได้จากการศึกษาการเลี้ยวเบนของรังสีเอกซ์ เมื่อผ่านโครงผลึกของสารหรือจากการวิเคราะห์สเปกตรัมของโมเลกุลสาร ซึ่งพบว่าความยาวพันธะมีแนวโน้มเพิ่มขึ้นตามขนาดอะตอมคู่ร่วมพันธะและการใช้อิเล็กตรอนร่วมกันทำให้ความยาวพันธะโคเวเลนต์สั้นกว่าผลรวมของรัศมีอะตอมอิสระที่มาสร้างพันธะกันสำหรับอะตอมคู่ร่วมพันธะเดียวกันความยาวพันธะจะลดลงจากพันธะเดี่ยวพันธะคู่และพันธะสามตามลำดับอย่างไรก็ตามความยาวพันธะชนิดเดียวกันระหว่างอะตอมคู่เดียวกันอาจจะไม่เท่ากันในสารต่างชนิดกัน
                         ในการประมาณความยาวพันธะระหว่างอะตอมคู่หนึ่ง โดยทั่วไปนิยมใช้ความยาวพันธะเฉลี่ย การศึกษาความยาวพันธะของโมเลกุลโคเวเลนต์นำไปสู่การอธิบายการเกิดพันธะในโมเลกุลของสารโคเวเลนต์บางชนิดที่สามารถเขียนโครงสร้างลิวอิสตามกฎออกเตตได้มากกว่า 1 โครงสร้างเช่นโมเลกุลโอโซนมีโครงสร้างลิวอิส 2 โครงสร้างซึ่งประกอบด้วยพันธะเดี่ยวและพันธะคู่ระหว่างออกซิเจนที่ควรมีค่าความยาวพันธะไม่เท่ากัน แต่จากการศึกษาพบว่าความยาวพันธะระหว่างออกซิเจนมีค่าเท่ากับ 128 พิโกเมตรเพียงค่าเดียว ซึ่งเป็นค่าที่อยู่ระหว่างความยาวพันธะ O-O (148 พิโกเมตร) และพันธะ O=O (121 พิโกเมตร) แสดงว่าพันธะทั้งสองในโมเลกุลโอโซนเป็นพันธะชนิดเดียวกันที่อาจอธิบายได้โดยทฤษฎี เรโซแนนซ์ ว่าอิเล็กตรอนคู่ร่วมพันธะ 1 คู่เคลื่อนย้ายไปมาระหว่างอะตอมทั้ง 3 ทำให้เกิดโครงสร้างผสมระหว่าง 2 โครงสร้างการเคลื่อนย้ายตำแหน่งของอิเล็กตรอนคู่ร่วมพันธะในโมเลกุลที่เขียนโครงสร้างลิวอิสได้มากกว่าหนึ่งแบบเรียกว่า เรโซแนนซ์ และเรียกโครงสร้างลิวอิสแต่ละแบบว่า โครงสร้างเรโซแนนซ์ โดยแสดงการเกิดเรโซแนนซ์ระหว่างโครงสร้างด้วยลูกศร 2 หัวและเรียกโครงสร้างผสมของโครงสร้างเรโซแนนซ์ทุกโครงสร้างว่าโครงสร้างเรโซแนนซ์ผสม ดังรูป

นอกจากความยาวพันธะแล้ว กราฟที่แสดงการเปลี่ยนแปลงพลังงานในการเกิดโมเลกุลแก๊สไฮโดรเจนและแสดงให้เห็นว่าโมเลกุลแก๊สไฮโดรเจนมีพลังงานต่ำกว่าอะตอมไฮโดรเจน 436 กิโลจูลต่อโมล หมายความว่าการทำให้โมเลกุลแก๊สไฮโดรเจน 1 โมเลกุลแยกออกเป็นอะตอมไฮโดรเจน 2 อะตอมต้องใช้พลังงานอย่างน้อย 436 กิโลจูลต่อโมลในการสลายพันธะ ระหว่างอะตอมไฮโดรเจนดังสมการ

H2(g) + 436 kJ/mol ---> 2H(g)

ในทางกลับกัน อะตอมไฮโดรเจน 2 อะตอมสร้างพันธะระหว่างกันเกิดเป็นโมเลกุลแก๊สไฮโดรเจน 1 โมเลกุลจะคายพลังงาน 436 กิโลจูลต่อโมล ดังนี้



2H(g) ---> H2(g) + 436 kJ/mol

พลังงานปริมาณน้อยที่สุดที่ใช้ในการสลายพันธะระหว่างอะตอมคู่ร่วมพันธะในโมเลกุลในสถานะแก๊สให้เป็นอะตอมเดี่ยวในสถานะแก๊สเรียกว่าพลังงานพันธะซึ่งส่วนใหญ่ใช้หน่วยเป็นกิโลจูลต่อโมล

การประมาณพลังงานพันธะระหว่างอะตอมคู่หนึ่งโดยทั่วไปนิยมใช้พลังงานพันธะเฉลี่ยดังตาราง



                          จากตาราง จะเห็นว่าพันธะระหว่างคาร์บอนมีทั้งพันธะเดี่ยวพันธะคู่และพันธะสามซึ่งมีค่าพลังงานพันธะเป็น 346 614 และ 839 กิโลจูลต่อโมลตามลำดับ แสดงว่าพันธะสามแข็งแรงกว่าพันธะคู่และพันธะคู่แข็งแรงกว่าพันๆเดี่ยวและถ้าพิจารณาอะตอมคู่ร่วมพันธะๆเดียวกันของแท้ที่มีค่าพลังงานน้อยจะมีความยาวพันธะมาก นอกจากอะตอมคู่ร่วมพันธะเดียวกันแล้วความสัมพันธ์นี้ยังสามารถใช้เปรียบเทียบพันธะของธาตุในหมู่เดียวกันได้อีกด้วย
                         ปฏิกิริยาเคมีที่เกี่ยวข้องกับกระบวนการสลายพันธะในสารตั้งต้นและการสร้างพันธะเกิดเป็นผลิตภัณฑ์โดยการสลายพันธะเป็นกระบวนการดูด (E1) พลังงานซึ่งมีค่าเป็นบวกและการสร้างพันธะจะมีค่าเป็นลบเป็นกระบวนการคายพลังงาน (E2) และพลังงานของปฏิกิริยา (เดลต้า H) คำนวณได้จากผลรวมของ

 E1 และ E2 เดลต้า H = E1 + E2 

                         ถ้าพลังงานที่ใช้สลายพันธะมีค่ามากกว่าพลังงานที่ใช้สร้างพันธะจะได้ เดลต้า H มีเครื่องหมายเป็นบวก แสดงว่าปฏิกิริยานั้นเป็นปฏิกิริยาดูดพลังงานในทางกลับกันถ้าพลังงานที่คายออกมาจากการสร้างสรรค์ๆมีค่ามากกว่าพลังงานที่ต้องใช้สลายพันธะ จะได้เดลต้า H มีเครื่องหมายเป็นลบ แสดงว่าปฏิกิริยานั้นเป็นปฏิกิริยาคายพลังงาน
               3.3.4 รูปร่างโมเลกุลโคเวเลนต์ 
                       โมเลกุลโคเวเลนต์ที่ประกอบด้วยอะตอมมากกว่า 2 อะตอมนอกจากความยาวพันธะและพลังงานพันธะแล้วข้อมูลที่ใช้ในการอธิบายสมบัติของสารคือ รูปร่างโมเลกุล ในโมเลกุลของน้ำคาร์บอนไดออกไซด์แอมโมเนียและโบรอนไตรฟลูออไรด์มีรูปร่างเป็นโมเลกุลที่ต่างกันหรือไม่อย่างไรเนื่องจากโมเลกุลมีขนาดเล็กมากจึงไม่สามารถพิจารณารูปร่างโมเลกุลได้โดยตรงและสามารถศึกษาเกี่ยวกับรูปร่างโมเลกุลโดยการจำลองตำแหน่งของคู่อิเล็กตรอน ในการทดลอง ดังนี้


คลิกเพื่อเข้าดูการทดลองได้เลย : การจัดตัวของลูกโป่งกับรูปร่างโมเลกุลโคเวเลนต์

จากกิจกรรม ในตอนที่ 1 ลูกโป่งแต่ละลูกซึ่งมีปริมาตรเท่ากันเมื่อนำมาผูกข้อติดกันพบว่าลูกโป่งแต่ละรูปผัดกันเกิดการจับตัวเป็นรูปร่างต่างๆที่สมมาตรในที่มีลูกโป่งเป็นตัวแทนของกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะระหว่างอะตอมกลางและอะตอมล้อมรอบซึ่งอิเล็กตรอนเหล่านี้จะผลักกันด้วยแรงกระทำระหว่างประจุชนิดเดียวกันทำให้ได้คิดค่าของพันธะอยู่ห่างกันมากที่สุดเกิดเป็นรูปร่างโมเลกุลในลักษณะเดียวกันกับการจัดตัวของลูกโป่ง และในกิจกรรมตอนที่ 2 ลูกโป่งต่างสีใช้แทนอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวซึ่งรูปร่างโมเลกุลพิจารณาจากตำแหน่งของอะตอมทั้งหมดโดยไม่นำตำแหน่งของอิเล็กตรอนคู่โดดเดี่ยวมาพิจารณา การคาดคะเนรูปร่างโมเลกุลจากโครงสร้างลิวอิสโดยอาศัยการผลักกันของอิเล็กตรอนคู่ร่วมพันธะและอิเล็กตรอนคู่โดดเดี่ยวอาจใช้ทฤษฎีการผลักระหว่างคู่อิเล็กตรอนในวงเวเลนซ์ (VSEPR) โดยทฤษฎีนี้มีหลักการว่าอิเล็กตรอนคู่โดดเดี่ยวอยู่ใกล้นิวเคลียสมากกว่าอิเล็กตรอนคู่ร่วมพันธะดังนั้นรหัสระหว่างอิเล็กตรอนคู่โดดเดี่ยวด้วยกันจึงมีค่ามากกว่าแรงผลักระหว่างอิเล็กตรอนคู่ร่วมพันธะกับอิเล็กตรอนคู่โดดเดี่ยว และมากกว่าแรงผลักระหว่างอิเล็กตรอนคู่ร่วมพันธะด้วยกัน
จากผลการทดลองกิจกรรมการจับตัวของลูกโป่งกับรูปร่างโมเลกุลโคเวเลนต์สรุปรูปร่างโมเลกุลโคเวเลนต์ดังตาราง




                           
                           
                           
3.3.5 สภาพขั้วของโมเลกุลโคเวเลนต์
สารโคเวเลนต์ที่เกิดจากอะตอมชนิดเดียวกันเช่นแก๊สไฮโดรเจนมีการกระจายของกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะระหว่างอะตอมทั้งสองเท่ากันทั้งๆที่เกิดขึ้นในลักษณะเช่นนี้จะเรียกว่าพันธะโคเวเลนต์ไม่มีขั้วและสารโคเวเลนต์ที่เกิดจากอะตอมต่างชนิดกันและมีค่าอิเล็กโทรเนกาติวิตีแตกต่างกันจะมีการกระจายของกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะระหว่างอะตอมไม่เท่ากันเช่นไฮโดรเจนคลอไรด์มีอิเล็กตรอนคู่ร่วมพันธะอยู่บริเวณอะตอมคลอรีนมากกว่าอะตอมไฮโดรเจนเพราะอะตอมคลอรีนมีค่าอิเล็กโทรเนกาติวิตีมากกว่าอะตอมไฮโดรเจนทำให้อะตอมของดีแสดงประจุไฟฟ้าค่อนข้างรถยนต์อะตอมไฮโดรเจนมีค่าอิเล็กโทรเนกาติวิตีน้อยกว่าแสดงประจุไฟฟ้าค่อนข้างบวก ที่เกิดขึ้นลักษณะนี้เรียกว่าพันธะโคเวเลนต์มีขั้ว การแสดงขั้วของพันธะอาจใช้สัญลักษณ์ เดลต้าบวก สำหรับอะตอมที่แสดงประจุไฟฟ้าค่อนข้างบวก และเดลต้าลบ สำหรับอะตอมที่แสดงประจุไฟฟ้าค่อนข้างลบหรืออาจใช้เครื่องหมายโดยให้หัวลูกศรหันชี้ไปในทิศของอะตอมที่แสดงประจุไฟฟ้าค่อนข้างลบส่วนท้ายลูกศร ที่มีลักษณะคล้ายเครื่องหมายบวกให้อยู่บริเวณอะตอมที่แสดงประจุไฟฟ้าค่อนข้างบวก


   ของพันธะทำให้โมเลกุลอะตอมคู่ที่ประกอบด้วยธาตุชนิดเดียวกันเป็นโมเลกุลไม่มีขั้วโมเลกุลอะตอมคู่ที่ประกอบด้วยธาตุต่างชนิดกันเป็นโมเลกุลมีขั้วและโมเลกุลโคเวเลนต์ที่ประกอบด้วยอะตอมมากกว่า 2 อะตอม และพันธะระหว่างครูอะตอมเป็นพันธะมีขั้วจะเป็นโมเลกุลมีขั้วหรือไม่อย่างไร สภาพขั้วของโมเลกุลที่ประกอบด้วยอะตอมมากกว่า 2 อะตอมพิจารณาจากการรวมสภาพขั้วของพันธะแบบเวกเตอร์ ซึ่งถ้าเวกเตอร์ หักหลังกันหมดจะทำให้โมเลกุลไม่มีขั้วแต่ถ้าเวกเตอร์แทนละกันไม่หมดโมเลกุลจะเป็นโมเลกุลที่มีขั้ว


    โมเลกุลที่อะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว และอะตอมล้อมรอบเหมือนกันทุกอะตอมเป็นโมเลกุลไม่มีขั้วถึงแม้ว่าพันธะภายในโมเลกุลจะเป็นพันธะที่มีขั้วแต่เนื่องจากรูปร่างโมเลกุล


    สำหรับโมเลกุลที่อะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวหรือมีอะตอมล้อมรอบเป็นธาตุต่างชนิดกันส่วนใหญ่เป็นโมเลกุลมีขั้วเนื่องจากเวกเตอร์สภาพขั้วของพันธะหักล้างกันไม่หมด
                      โมเลกุลอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวส่วนใหญ่เป็นโมเลกุลแบบมีขั้วและมีบางชนิดอาจเป็นโมเลกุลไม่มีขั้วเนื่องจากมีรูปร่างโมเลกุลแบบสี่เหลี่ยมแบนราบทำให้เวกเตอร์สภาพขั้วหักล้างกันหมดโมเลกุลอะตอมกลางมีอิเล็กตรอนคู่โดดเดี่ยวส่วนใหญ่เป็นโมเลกุลแบบมีขั้วและมีบางชนิดอาจเป็นโมเลกุลไม่มีขั้วเนื่องจากมีรูปร่างโมเลกุลแบบสี่เหลี่ยมแบนราบทำให้เวกเตอร์สภาพขั้วหักล้างกันหมด
           3.3.6 แรงยึดเหนี่ยวระหว่างโมเลกุลและสมบัติของสารโคเวเลนต์
                      ที่อุณหภูมิห้องสารโคเวเลนต์แต่ละชนิดอันอยู่ในสถานะที่แตกต่างกันทั้งนี้ขึ้นอยู่กับแรงยึดเหนี่ยวระหว่างโมเลกุลหรือแรงแวนเดอร์วาลส์ โดยในสถานะของแข็งโมเลกุลอยู่ชิดกันจนไม่สามารถเคลื่อนที่ได้และมีแรงยึดเหนี่ยวระหว่างโมเลกุลมากในสถานะของเหลวโมเลกุลสามารถเคลื่อนที่ได้แต่ยังคงอยู่ชิดติดกันและมีแรงยึดเหนี่ยวระหว่างโมเลกุลน้อยกว่าในของแข็งส่วนในสถานะแก๊สโมเลกุลอยู่ห่างกันสามารถเคลื่อนที่ได้อย่างอิสระและมีแรงยึดเหนี่ยวระหว่างโมเลกุลน้อยมากจนถือว่าไม่มีแรงยึดเหนี่ยวระหว่างโมเลกุลดังนั้นการเปลี่ยนแปลงสถานะของสารจากของแข็งไปเป็นของเหลว หรือของเหลวไปเป็นแก๊สซึ่งเกี่ยวข้องกับการทำลายงานยึดเหนี่ยวระหว่างโมเลกุลโดยไม่มีการทำลายพันธะโคเวเลนต์ ซึ่งแรงยึดเหนี่ยวระหว่างโมเลกุลมีค่าพลังงานน้อยกว่าพันธะโคเวเลนต์มากสามารถทำลายได้ด้วยการให้พลังงานความร้อนแก้สารจนกระทั่งโมเลกุลของสารมีพลังงานจลน์สูงพอที่จะเกิดการเปลี่ยนแปลงสถานะได้ดังนั้นสารแต่ละชนิดซึ่งมีแรงยึดเหนี่ยวระหว่างโมเลกุลที่แตกต่างกันจะมีจุดหลอมเหลวและจุดเดือดที่ต่างกันด้วย
                      นอกจากจุดหลอมเหลวของสารที่จะเกี่ยวข้องกับแรงยึดเหนี่ยวระหว่างโมเลกุลแล้วยังขึ้นอยู่กับการจัดเรียงโมเลกุลในของแข็งทำให้แนวโน้มของจุดหลอมเหลวอาจไม่สอดคล้องกับแรงยึดเหนี่ยวระหว่างโมเลกุลโดยตรง
                      แรงยึดเหนี่ยวระหว่างโมเลกุลเกี่ยวข้องกับขนาดของโมเลกุลและสภาพขั้วของโมเลกุลซึ่งแรงยึดเหนี่ยวระหว่างโมเลกุลมีหลายชนิดและมีชื่อเรียกที่ต่างกันซึ่งในที่นี้จะกล่าวถึง 3 ชนิดที่สำคัญดังนี้ 
                      1.และแพร่กระจายลอนดอน แรงแพร่กระจายลอนดอน เป็นแรงยึดเหนี่ยวระหว่างโมเลกุลไม่มีขั้วหรืออะตอมแก๊สมีสกุลซึ่งเป็นแรงอย่างอ่อนๆที่เกิดขึ้นจากการกระจายของอิเล็กตรอนในอะตอมขณะใดขณะหนึ่งซึ่งอาจไม่เท่ากันจึงทำให้สภาพขั้วชั่วขณะ แล้วเหนี่ยวนำให้โมเลกุลที่อยู่ติดกันเกิดขั้วตรงข้ามและมีแรงดึงดูดชั่วขณะ โดยแรงแผ่กระจายนี้เพิ่มขึ้นตามขนาดของโมเลกุลเนื่องจากโมเลกุลขนาดใหญ่สามารถเกิดสภาพขั้วชั่วขณะได้มากกว่า 
                      2.แรงระหว่างขั้วสำหรับโมเลกุลมีขั้วนอกจากจะมีแรงแผ่กระจายลอนดอนแล้ว ยังมีแรงดึงดูดที่เกิดจากสภาพของขั้วโมเลกุลด้วยโมเลกุลที่อยู่ใกล้กันจะหันส่วนของโมเลกุลที่มีขั้วตรงข้ามกันเข้าหากันเกิดเป็นแรงดึงดูดทางไฟฟ้าจากสภาพขั้วนี้โดยทั่วไปในระหว่างขั้วเพิ่มขึ้นตามสภาพขั้วของโมเลกุลที่มีขนาดใกล้เคียงกัน
                      3.พันธะไฮโดรเจนเมื่อพิจารณาจุดเดือดของสารประกอบไฮโดรเจนกับธาตุหมู่ VIIA จะเห็นว่า HF มีจุดเดือดสูงกว่าสารประกอบอื่นทั้งที่มีขนาดโมเลกุลเล็กที่สุดซึ่งไม่เป็นไปตามแนวโน้มของขนาดโมเลกุลดังที่ได้กล่าวมาแล้วข้างต้นแสดงว่า HF มีแรงดึงดูดระหว่างโมเลกุลมากกว่าสารประกอบของไฮโดรเจนกับธาตุหมู่ VIIA อื่นๆ ทั้งนี้เพราะผลต่างของค่าอิเล็กโทรเนกาติวิตีระหว่างไฮโดรเจนกับฟลูออรีนมีค่ามากทำให้กลุ่มหมอกอิเล็กตรอนอยู่ทางด้านอะตอมฟลูออรีนที่มีขนาดเล็กอย่างหนาแน่นอะตอมฟลูออรีนและไฮโดรเจนมีสภาพขั้วสูงกว่าในกรณีที่ HCl HBr และ HI มาก ทำให้มีแรงดึงดูดระหว่างโมเลกุลมากด้วยแรงดึงดูดระหว่างโมเลกุลที่เกิดขึ้นจากอะตอมไฮโดรเจนของโมเลกุลหนึ่งกับอิเล็กตรอนคู่โดดเดี่ยวบนอะตอมของธาตุที่มีขนาดเล็กและมีอิเล็กโทรเนกาติวิตีสูงของอีโมเลกุลหนึ่งเรียกแรงดึงดูดนี้ว่า พันธะไฮโดรเจน


3.4 พันธะโลหะ
โลหะบางชนิดเส้นทองแดง เหล็กอะลูมิเนียมมีสมบัติบางประการคล้ายกับแสดงว่าสารเหล่านี้มีการยึดเหนี่ยวกันระหว่างอนุภาคที่เหมือนกันและอะตอมธาตุโลหะสร้างพันธะเคมีระหว่างกันอย่างไรเหมือนหรือต่างกัน จากพันธะไอออนิกและโคเวเลนต์หรือไม่
3.4.1 การเกิดพันธะโลหะ
จากที่ทราบแล้วว่าโลหะส่วนใหญ่มีสถานะเป็นของแข็งมีจุดหลอมเหลวและจุดเดือดสูงผิวมันวาวสามารถนำไฟฟ้าและความร้อนได้ดีจะสมบัติดังกล่าวจะเห็นว่าโลหะมีสมบัติบางประการของสารประกอบไอออนิกและมีสมบัติบางประการที่แตกต่างจากสารประกอบไอออนิกเช่นการนำไฟฟ้าและการนำความร้อนได้ดีในสถานะของแข็งผิวมันวาวและสมบัติส่วนใหญ่ต่างจากพันธะโคเวเลนต์ซึ่งแสดงว่าโลหะน่าจะยึดเหนี่ยวกันด้วยพันธะที่แตกต่างจากพันธะไอออนิกและพันธะโคเวเลนต์การที่อะตอมของโลหะมีค่าพลังงานไอออไนเซชันต่างการยึดเหนี่ยวระหว่างวาเลนอิเล็กตรอนกับโปรตอนในนิวเคลียสจึงน้อยให้เวเลนซ์อิเล็กตรอนของแต่ละอะตอมสามารถเคลื่อนที่ได้อย่างอิสระไปทั่วทั้งชิ้นโลหะและเกิดการยึดเหนี่ยวกับโปรตอนในนิวเคลียสทุกทิศทุกทางการยึดเหนี่ยวนี้เรียกว่าพันธะโลหะการเกิดพันธะโลหะแสดงได้ด้วยแบบจำลองทะเลอิเล็กตรอน
3.4.2 สมบัติของโลหะ
1.โลหะมีจุดหลอมเหลวและจุดเดือดสูง
2.โลหะมีผิวมันวาวและสามารถสะท้อนแสงได้
3.โลหะนำไฟฟ้าและความร้อนได้ดี นอกจากนี้โลหะยังสามารถตีให้ออกเป็นแผ่นและดึงให้เป็นเส้นด้าย 
3.5 การใช้ประโยชน์ของสารประกอบไอออนิก สารโคเวเลนต์ และโลหะ
จากการที่สารประกอบไอออนิกสารโคเวเลนต์และโลหะมีสมบัติเฉพาะตัวมาว่าการที่ต่างกันจึงสามารถนำมาใช้ประโยชน์ในด้านต่างๆได้ตามความเหมาะสม เช่น
- แอมโมเนียมคลอไรด์และซิงค์คลอไรด์ เป็นสารประกอบไอออนิกที่สามารถนำไฟฟ้าได้จากการแตกตัวเป็นไอออนเมื่อละลายน้ำจึงนำไปใช้เป็นสารอิเล็กโทรไลต์ในถ่านไฟฉาย
- พอลิไวนิลคลอไรด์หรือ PVC เป็นสารโคเวเลนต์ที่ไม่สามารถนำไฟฟ้าได้จึงเป็นฉนวนไฟฟ้าที่หุ้มสายไฟฟ้า
- ซิลิกอนคาร์ไบด์ เป็นสารโคเวเลนต์โครงร่างตาข่ายที่มีจุดหลอมเหลวสูงและมีความแข็งแรงมากจึงนำไปใช้ทำเครื่องบด
- ทองแดงและอะลูมิเนียม เป็นโลหะที่นําไฟฟ้าได้ดีจึงนำไปใช้เป็นตัวนำไฟฟ้าอลูมิเนียมและเหล็กเป็นโลหะที่นําความร้อนได้ดีจึงนำไปทำภาชนะสำหรับประกอบอาหาร เช่น หม้อ กะทะ

ข้อสอบ PAT 2

  ข้อสอบ PAT    ที่มา :  https://www.tutorferry.com/2016/11/pat2-chem-key.html